
The Lambda Calculus:

A Historical and Practical Tour

Richard B. Elrod

Student, Dept. of Mathematics, Youngstown State University, Youngstown, Ohio

E-mail address: rbelrod@student.ysu.edu

2010 Mathematics Subject Classi�cation. Primary 03B40, 68N18;
Secondary 68N15, 03B15, 03D10

Key words and phrases. Lambda calculus, logic, functional programming,
programming languages, type theory, Alonzo Church, Alan Turing

Contents

Preface vi

Part 1. Pre-History 1

Chapter 1. Frege and \Currying" 2
1.1. Gottlob Frege 2
1.2. Curry: Food? Mathematician? Or A Useful Technique For Working

With Functions? 2

Chapter 2. Combinatory Logic 4
2.1. Lambda Calculus Before Its Time 4
2.2. Combinatory Terms 4
2.3. Connection to Lambda Calculus 5

Chapter 3. Lambda Calculus 7
3.1. Enter: Alonzo Church 7
3.2. Entscheidungsproblem 8
3.3. Type Theory 9

Chapter 4. Closing Remarks 11
4.1. Parting is such sweet sorrow... 11

Bibliography 12

v

Preface

The present paper, written in partial ful�llment of the requirements for the His-
tory of Mathematics course at Youngstown State University, will guide the reader
on a tour through an important development in the �eld of mathematical logic,
namely the Lambda Calculus, which has since contributed to the advancement of
the �elds of computer science and type theory among others.

After reading this paper in its entirety, the reader should come away with an
understanding of why the Lambda Calculus was created and which problems it
was meant to solve, how it was developed, where it and variations of it have been
applied and the signi�cance of these in these other �elds, and knowledge (but not
full proofs) of several important related theorems.

As the requirement for this paper states that \[our] goal should be to make
the material [being presented] clear to a sophomore mathematics major who has
not previously studied this material," we take take a fairly high-level approach
throughout the paper, and speci�cally we avoid several proofs which the interested
reader will likely want to explore upon completion of the present paper. References
related to these will be mentioned in the text, and provided in the bibliography.

The paper intends to adhere to the style guidelines set forth by the American
Mathematical Society (AMS).

We wish the reader enjoyment reading about this important branch of mathe-
matical history.

Richard B. Elrod

vi

Part 1

Pre-History

CHAPTER 1

Frege and \Currying"

1.1. Gottlob Frege

In the spirit of Rosser [Ros82] who himself plays an important role in our story,
we begin our journey with Gottlob Frege, a German mathematician and logician
born on November 8, 1848. Focusing primarily on the intersection of philosophy and
mathematics (i.e., the philosophy of mathematics) alongside mathematical logic,
Frege \discovered, on his own, the fundamental ideas that have made possible
the whole modern development of logic and thereby invented an entire discipline."
[Dum18]

In 1891, Frege gave a lecture [Fre91] to the Fenaischen Gesellschaft f�ur Medi-

zin und Naturwissenschaften in which he discussed the notion of functions and their
relation to his former notion of concepts, and in which he began to assign speci�c
logical rules for how functions operate. He put forth that the concept of a function
had been used in areas such as analysis originally, but that the original understand-
ing of them might have been summarized by saying something such as \A function
of x was taken to be a mathematical expression containing x, a formula containing
the letter x." It was only later that a more strict de�nition came to be down, and
the purpose of Frege's lecture and eventual article was to narrow down laws which
provide a more meaningful de�nition of what a function is.

Two years later in 1893, Frege published [Fre93] the �rst part of a series
called Grundgesetze der Arithmetik (Basic Laws of Arithmetic), which used his
own formulation of functions to state and proove theorems regarding arithmetic.
Within this piece is a section which, using his notation1, e�ectively shows how
functions which take two arguments can be thought of as two functions which each
take one argument. This idea, elaborated upon in the subsequent section, was
explored further by Moses Sch�on�nkel [Sch20] and later by Haskell Curry [CF58],
after whom the technique is now named.

1.2. Curry: Food? Mathematician? Or A Useful Technique For

Working With Functions?

As we will see later, Lambda Calculus was originally created to aid in the
study of functions. In the original lambda calculus, every function took exactly one
argument. While this might seem like a limitation at �rst glance, in this section,
we examine why that is not the case.

Although in lower-level mathematics courses, it can be easy to forget that func-
tions themselves are �rst-class mathematical objects, let us remember this fact. In
fact, let us recall what a (total) function is from a formal, set-theoretic foundation.

1a functional notation which is vastly di�erent from what we use today, but likely to be found
interesting by a reader of the present paper.

2

1.2. CURRY: FOOD? MATHEMATICIAN? OR A USEFUL TECHNIQUE FOR WORKING WITH FUNCTIONS?3

Definition 1.1. A function f : X ! Y is a set of 2-tuples (x; y), so that
x 2 X and y 2 Y , such that every element of X is the �rst component of exactly
one of the tuples in the set.

Let us consider for a moment functions which take two parameters, such as
f : (X;Y)! Z (or to use a slightly more conventional notation, f : X � Y ! Z).
Then elements of the set described in the de�nition above must have the form
((x; y); z), where x 2 X, y 2 Y , and z 2 Z. In this case, we can apply the function
f to the two arguments x and y, as in f(x; y) = z 2 Z.

What the technique of currying says is that for every function f , we can think
of f : X � Y ! Z as being equivalent to a function fcurried : X ! (Y ! Z), and
vice versa.

Let us look at an example.

Example 1.2. Let f : Z� Z! Z be de�ned by the usual addition operation,
f(n; k) = n+ k.

By currying, this is the same as a function fcurried : Z ! (Z ! Z), de�ned as
follows:

fcurried(x) = a function g : Z ! Z, where g is then de�ned as g(y) = x + y,
where x is the original argument to which fcurried was applied.

So we have: f(2; 3) = 2 + 3 = 5, and:
fcurried(2) = a function which when applied to some number adds 2 to it. So

we can do: fcurried(2)(3) = 2 + 3 = 5.

In modern notation, we might express this by: ZX�Y �= (ZY)X , where the
left hand side represents the set of all functions X � Y to Z and the right hand
side represents the set of all functions from X to the set of functions from Y to
Z. In modern terminology, we might fall back on advancements in category theory
beyond the scope of the present paper, where the concept can be generalized further
to categories other than sets and functions2. The correspondence can also be de�ned
by other branches of mathematics such as function spaces, topology, homological
algebra, domain theory, logic, and type theory.

For the sake of completeness, let us prove it true for set functions.

Lemma 1.3. There exists a bijection between ZX�Y and (ZY)X .

Proof. Let g : X � Y ! Z be given. Also let x 2 X be given, and let the
function fx be given by fx(y) = g(x; y). Let the function f be given by f(x) = fx.
We must show this is one-to-one and onto.

Suppose g1 and g2 are given with f1(x)(y) = g1(x; y) and f2(x)(y) = g2(x; y). If
f1 = f2, then 8x:f1(x) = f2(x). Then 8x; y:f1(x)(y) = f2(x)(y). So 8x; y:g1(x; y) =
g2(x; y). So g1 = g2 which shows one-to-one.

Now let f� be given. De�ne g by g(x; y) = f�(x)(y). Then we get fx from g

by fx(y) = g(x; y)) and f by f(x) = fx. So 8x; y:f(x)(y) = g(x; y) = f�(x)(y) and
we can claim f = f�. This shows onto, completing the proof.3 �

2In category-theoretic terms, this relationship is a universal property of exponential objects
and forms an adjunction in a cartesian closed category. This generalization has many uses, but
category theory is a complex topic and is probably not something which should be explained to a
sophomore who has yet to discover it.

3The notation of the proof actually becomes much nicer if we assume the existence of Lambda
Calculus. However since we have not gotten to that yet, we fall back to slightly clumsy set-theoretic
notation.

CHAPTER 2

Combinatory Logic

2.1. Lambda Calculus Before Its Time

We now turn our attention to the advent of a logical system known as combina-

tory logic or combinator calculus, a logic system and notation developed by Moses
Sch�on�nkel [Sch20] in 1920 (published in 1924) and rediscovered by Haskell Curry
[Cur30] in late 1927, less than a decade before Lambda Calculus entered the scene.

The system was developed for the purpose of eliminating concerns of variable
bindings (i.e. variables introduced by quanti�ers such as \8" and \9") when working
with statements and expressions in higher-order logic (HOL).

In combinatory logic, there is a set of primitive combinators. Let us de�ne
what this means.

Definition 2.1. A higher-order function is a function which only uses func-
tion application and previously de�ned combinators to generate its result.

Definition 2.2. Similarly, a combinator is a function whose argument is also
a function.

In the parlance of Lambda Calculus, we can ascribe to combinator a slightly
di�erent de�nition, as we will see in the subsequent chapter.

As combinators each take one argument, let us assume in this chapter that all
combinators are curried as discussed in the foregoing chapter. Thus, if we speak of
a function taking \multiple parameters", we imply shorthand notation for curried
functions which take one parameter each.

2.2. Combinatory Terms

In combinatory logic1, terms can take one of two forms: P (which is one of
the primitive combinators), or (E1 E2) which is the application of the combinatory
term E1 to E2.

Though various formulations of cominatory logic exist (by modifying which
primitive combinators are included in the system), the most common formulation
includes three primitive combinators, known as S, K, and I. It is worth noting
that Sch�on�nkel's original system had several other primitive combinators as well,
but he proved that all of the others (and in fact I) can be derived from only S and
K[Sch20].

1The information contained in this section is well-known to anyone who has studied this
branch of math and computer science to any extent. As such, we don't cite a speci�c source
throughout this section (any introductory combinatory logic book su�ces), but the reader inter-
ested in the history of the subject should consult [Sch20].

4

2.3. CONNECTION TO LAMBDA CALCULUS 5

Looking at S, K, and I, we de�ne the I combinator to be simply the identity
function. Whatever is passed to it is simply returned unchanged, as in (I x) = x.2

The K creates constant functions. That is, given an argument x, (K x) is a
combinator which takes a parameter y and always returns x, ignoring the newly
passed y. Thus, (K x y) = x. Here it is important to note that by convention
terms are grouped to the left, so (K x y) = ((K x) y).

The S combinator is a generalized version of the substitution function, and is
de�ned as follows: (S x y z) = (x z (y z)). That is, it applies the argument z to
the arguments x and y, and then applies the result of the latter application to the
result of the former.

The astute reader might recognize that a function equivalent to I can be con-
structed purely out of S and K.

(S K K x) = (K x (K x))

= x

2.3. Connection to Lambda Calculus

\So," the reader might ask, \what has this got to do with Lambda Calculus?"
It turns out, as we will see, that it has quite a lot to do with Lambda Calculus. In
fact, this combinator calculus is computationally equivalent to the Lambda Calcu-
lus (which itself is computationally equivalent to Turing machines and to G�odel's
notation of generalized recursive functions). But let us not get ahead of ourselves.

The combinator calculus described above (and others derived from it) can be
seen as a particular kind of Lambda Calculus, but it is of interest to our story at
this point because it plays a critical role in the development of Lambda Calculus.

While Sch�on�nkel founded the theory of combinatory logic, he only published
[Sch20] and no other paper on the topic. Only one other paper bears his name
[CH06]. In fact, [CH06] tells use that \By 1927, he was said to be mentally ill
and in a sanatorium," due to his later years being spent in \hardship and poverty."
He died in 1942. Sadly, the last known of his manuscripts were burned for warmth
due to the wartime conditions of the era [CH06].

2.3.1. Enter: Haskell Curry. In 1900, Haskell Curry was born and would
come to rediscover combinatory calculus independently of Sch�on�nkel (and of von
Neumann who made use of combinatory logic in his work in 1925, though it is not
known whether or not his work was derived from Sch�on�nkel's work, or discovered
independently) [CH06]. The statement of the substitution rule for propositional
logic was missing from Russell and Whitehead's Principia Mathematica, which was
admitted by Russell later. We let [CH06] talk more about Curry:

Around 1926-27, Curry began to look for a way to break the
substitution process down into simpler steps, and to do this,
he introduced a concept of combinatoressentially the same as
Sch�on�nkel's.

2Note that depending on who is asked, the study of combinatory logic doesn't itself include
variables, and it is purely the combinators themselves which are studied. Here and in the following
examples, we use variables x; y; : : : ; for demonstrating how the combinators work when applied
to something.

6 2. COMBINATORY LOGIC

Later in 1927, Curry would discover [Sch20]. He would go on to create a
formal system based on combinators along with a completeness proof, which used an
abstraction algorithm that was the �rst of its kind. Later, Church [Chu35], Rosser
[Ros35] and Rosenbloom [Ros50], would develop competing \simpiler" algorithms,
but these would often produce more esoteric (though equivalent) results, and were
more ine�cient [CH06]. When the 1970s came around and interest rose in the use
of such systems for practical programming purposes, algorithms similar to Curry's
original were once again of interest [CH06].

We �nish this section by once again defering to [CH06]:

[... By] the end of the 1920s the combinator concept had provided
two useful formal techniques: a computationally e�cient way
of avoiding bound variables, and a �nite axiomatization of set
theory.

CHAPTER 3

Lambda Calculus

3.1. Enter: Alonzo Church

We move ahead in our journey to Alonzo Church, born in 1903 in Washington
D.C.[CH06]. Church became a student of Princeton, studying there until 1967
[CH06].

Circa 1928, Church began to construct a formal system with the purpose of
studying logical foundations while being \more natural" than both the type theory
put forth by Russell in an appendix of Principia Mathematica and Zermelo's set
theory [CH06]. He also insisted that the system not contain free variables.

Church decided to base the system on functions instead of sets, and included
primitively a notion of abstraction and application. Today the notation used for
these are, for example, �x: M (for abstraction), and (F X) (for application)
[CH06]. It is worth noting (again per [CH06]) that Church was not the �rst
to use an explicit notation for function abstraction, but he was the �rst to do so
alongside a set of conversion rules for the notation, and to study the resulting theory
in detail, which would become known as Lambda Calculus.

It was later discovered that Russell had \anticipated" the Lambda Calculus
several decades earlier between 1903 and 1905, while trying frantically to develop
a solution to Russell's Paradox [Kle03]. His notation was di�erent, but many
of the concepts were very similar. However beacuse his e�orts were so focused
on solving the paradox, and this work not leading to a satisfactory result, Rus-
sell never published his pre-Lambda-Calculus. In fact, it's believed that Church,
though inuenced by Russell's work in general, could not have known about Rus-
sell's anticipatory calculus.

Church's system given in [Chu32] was a type-free one, \with unrestricted quan-
ti�cation but without the law of excluded middle." [CH06]

The system included rules for substution (allowing for the replacement of all
free variables with some term), �-equivalence (stating equivalence of terms up to a
change of bound variables { for example, �x: x is the same expression (the identity
function) as �y: y), and �-reduction, which is the primary rule for term-rewriting
[ST18]. There is also a notion of �-equivalence, which allows for the dropping
of lambda terms in cases where they do nothing. For example, �x: Mx can be
rewritten by �-reduction to simply M .

In a 1933 version of his paper with the same name, Church gave a representation
of positive integers using Lambda Calculus terms, which became known as church
numerals[Chu33]. The numbers were represented not primitively, but purely in
terms of lambda abstractions as follows[CH06]:

� 1 = �xy: xy

� succ = �xyz: y(xyz)

7

8 3. LAMBDA CALCULUS

We note, however, that there is no 0 this original system. In [Kle36], Stephen
Kleene worked out a slightly di�erent way to de�ne integers, which paved the way
for more general recursive functions [Ros82]. In [CR36] it was known that every
function from positive integers to positive integers that is de�nable in terms of the
Lambda calculus is e�ectively calculable [Ros82]. Church then presented a result
now known as Church's Thesis which showed the converse: E�ectively calculable
functions from positive integers to positive integers are exactly those de�nable in the
Lambda Calculus. This result provided a \strong, and quite unexpected, version
of completeness." [Ros82]

Also in [CR36], a fairly strong form of consistency is shown for the Lambda
Calculus, as part of a proof of a well-known theorem called the Church-Rosser
Theorem, which we now state but do not prove1.

Theorem 3.1 (Church-Rosser). For every expression x and y so that x reduces

to y, there exists a z so that both x reduces to z and y reduces to z.

There is, admittedly, much more to say about the development itself of Lambda
Calculus and the variations that resulted in the 1930s. For example, the 1933 ver-
sion of Church's Calculus was found to be plagued with the Richard paradox in
[KR35]. However, at this point in our journey, we refer the interested reader to
[CH06] and the references therein, and move on to the application of the Lambda
Calculus to the problem of computability and the well-known Entscheidungsprob-

lem.

3.2. Entscheidungsproblem

The famous Entscheidungsproblem dates back to Hilbert in 1928. The idea is
to �nd an algorithm which takes a �rst-order logic statement as input and produces
a yes-or-no answer as to whether or not the statement is universally valid (valid
in every structure satisfying the axioms) [HA28]. Put another way, the idea is to
�nd an algorithm which decides whether or not a given statement is provable from
the axioms, using only the rules of �rst-order logic.

In [Kle36], a de�nition by Kleene (attributed to G�odel) is given for that of
a general recursive function [Ros82]. G�odel thought that this concept should be
\taken as the criterion of e�ectively calculable." In the same article, however,
Kleene showed that general recursiveness is exactly the same as being de�nable in
the Lambda Calculus, lending strong support to Church's Thesis [Ros82].

As this research was happening, Alan Turing had been focusing on developing
an abstraction notion of a computer, now known as a Turing machine [Ros82]
[Tur36]. He thought that the notion of e�ectively calculable should be the same
as those functions computable on a Turing machine. However a year later, Turing
proved that this concept is the same as being de�nable in the Lambda Calculus
[Ros82]. This is why the Lambda Calculus and combinator calculus play such a
large role within various �elds of computer science [Ros82]. This result is known
as the Church-Turing thesis. As a result, today, Lambda Calculus is used as the
foundation for many di�erent functional programming languages and is of interest
to those doing work in proof theory and type theory, among other branches that

1The paper cited provides the �rst known proof of the Church-Rosser Theorem, but many
proofs have been created and studied since. The result, also known as conuence of the Lambda
Calculus, has proven extremely important to its study.

3.3. TYPE THEORY 9

lie in the intersection of mathematics and computer science. It is worth noting
here that the Lambda Calculus provided the �rst proof of the unsolvability of
the Entscheidungsproblem [CH06]. However, Turing's proof via his machines was
much more accessible and transparent [CH06].

As time went on, other later-found-equivalent de�nitions of \e�ectively calcu-
lable" were proposed. For information on these, we refer the reader to page 16 of
[Ros82] and the sources cited therein.

3.3. Type Theory

The present paper would not be complete without a mention of the �eld of type
theory. Originally, as noted above, Church's Lambda Calculus was purely untyped.

Definition 3.2. Type theory is a branch of mathematics and computer
science originally created by Bertrand Russell as an appendix (appendix B) to
Principia Mathematica as a means of solving Russell's Paradox. It has since become
a �eld of study in its own right and drives much research in the computer science
sub�eld of programming language theory.

What type theory allowed Russell to do was e�ectively reject x 2 x as a formula
in his formulation of set theory. In brief2, Russell's type theory indexed every
inhabitant of the given universe with a type (in his case, a natural number). He
then required that for x 2 y to be a valid statement, the type of y must be one
greater than the type of x.

We are told by [ST18] that:

In 1940, Church gave a \formulation of the simple theory of types
which incorporates certain features of �-conversion" [Chu40].
Though the history of simple types extends beyond the scope of
this paper and Church's original formulation extended beyond
the syntax of the untyped �-calculus (in a way somewhat simi-
lar to the original, inconsistent formulation), one can intuitively
think of types as syntactic decorations that restrict the formation
of terms so that functions may only be applied to appropriate
arguments.

In this sense, types allow us to place restrictions on which terms (functions or
programs, in the vernacular of computer science) can be inhabited and under which
conditions. It is for this reason that the Lambda Calculus plays such a critical role
in programming systems such as automated theorem provers like Coq, Agda, and
Isabelle/HOL. Church's original formulation of the concept as applied to Lambda
Calculus is known as the \Simply Typed Lambda Calculus."

Type theory has been extended many times over the years, and is still an active
area of research in modern branches of computer science and mathematics, such
as Homotopy Type Theory, which lives in the intersection of topology, homotopy

2The original appendix where type theory �rst appears describes it better than we can in
this brief paper. The interested reader is suggested to refer to that appendix for a historic view of
type theory. For modern approaches and uses for it, particularly in computer science, Benjamin
Pierce's \Types and Programming Languages" or CMU's Robert Harper's \Practical Foundations
for Programming Languages" are excellent resources.

10 3. LAMBDA CALCULUS

theory, type theory, and mathematical foundations, particularly in an intuitionistic
setting, with an axiom known as \Univalence."3

3This topic, while extremely interesting, is extremely far beyond the scope of this paper. The
interested reader should reference the Homotopy Type Theory textbook, which is available as a
free download on https://homotopytypetheory.org/.

CHAPTER 4

Closing Remarks

4.1. Parting is such sweet sorrow...

We hope that this paper serves not only to ful�ll the requirement for the History
of Mathematics class as discussed in the preface, but also to whet the appetite of
the reader and spark an interest in not only Lambda Calculus and its applications,
but also modern branches of mathematics and computer science which make use of
it and its variants.

We note that there is much more to be said about every concept and section
listed in this paper, and that an extensive survey of the topic would likely be at
least double or triple the length of this paper.

Topics that the interested reader might consider researching more about in-
clude more information about Simply Typed Lambda Calculus, the \Lambda Cube"
which discusses other variants of the Lambda Calculus and their relation to type
thoery, di�erent versions of type theory (including Martin-L�of's theory of dependent
types, as well as linear type systems), and more about how the connection between
Turing's machines, G�odel's general recursive functions, and Church's Lambda Cal-
culus were found to be equivalent in computability power. Those interested particu-
lary in the mathematic applications of Lambda Calculus will be keen to learn about
its use as an internal language for Cartesian-closed categories in category theory;
and those interested in type theory will note that we did not discuss the Curry-
Howard Correspondence, an important correspondence which intimately links types
with propositions and programs (functions) with proofs of those propositions.

These topics are necessary for a complete overview of the Lambda Calculus,
but in the interest of time and conservation of paper, we shall have to say good
night, till it be morrow.

11

Bibliography

[CF58] Haskell B. Curry and Robert Feys, Combinatory logic, North-Holland Publishing Com-
pany, 1958.

[CH06] Felice Cardone and J. Roger Hindley, History of lambda-calculus and combinatory logic,
Handbook of the History of Logic, Vol. 5 (2006).

[Chu32] Alonzo Church, A set of postulates for the foundation of logic, Annals of Mathematics,
Second Series, Vol. 33, No. 2 (Apr., 1932), pp. 346-366 (1932).

[Chu33] , A set of postulates for the foundation of logic, Annals of Mathematics, Series
2, 34:839{864 (1933).

[Chu35] , A proof of freedom from contradiction, Proceedings of the National Academy
of Sciences of the U.S.A., 21:275{281 (1935).

[Chu40] , A formulation of the simple theory of types, Journal of Symbolic Logic,
5(2):56{68 (1940).

[CR36] Alonzo Church and J. Barkley Rosser, Some properties of conversion, Trans. Amer.
Math. Soc., Vol. 39 pp. 472-482 (1936).

[Cur30] Haskell B. Curry, Grundlagen der kombinatorischen logik (foundations of combinatorial
logic), American Journal of Mathematics (in German) (1930).

[Dum18] Michael A. E. Dummett, Gottlob frege | german mathematician and philosopher |
britannica.com, Encyclopaedia Britannica (2018).

[Fre91] Gottlob Frege, �Uber funktion und begri� (function and concept), Proceedings of the
Jena Society for Medicine and Science (1891), Translated by Peter Geach.

[Fre93] , Basic laws of arithmetic, Oxford University Press, 2016 (originally 1893).
[HA28] David Hilbert and Wilhelm Ackermann, Grundz�uge der theoretischen logik (principles

of mathematical logic), Springer-Verlag, 1928.
[Kle36] Stephen Cole Kleene, �-de�nability and recursiveness, Duke Mathematics Journal, Vol.

2 pp. 340-353 (1936).
[Kle03] Kevin C. Klement, Russell's 1903 - 1905 anticipation of the lambda calculus, History

and Philosophy of Logic, Vol. 24 (2003).
[KR35] Stephen Cole Kleene and J. Barkley Rosser, The inconsistency of certain formal logics,

Annals of Mathematics, Series 2, 36:630{636 (1935).
[Ros35] J. Barkley Rosser, A mathematical logic without variables, Annals of Mathematics, Series

2, 36:127{150 (1935).
[Ros50] Paul Rosenbloom, The elements of mathematical logic, Dover, Inc., 1950.
[Ros82] J. Barkley Rosser, Highlights of the history of the lambda calculus, Mathematics Re-

search Center, University of Wisconsin-Madison (1982).
[Sch20] Moses Sch�on�nkel, On the building blocks of mathematical logic, Math. Ann. 92 (1924)

pp. 305-316 (1920), Written for publication by Heinrich Behmann, Mar. 1924.
[ST18] Shane Steinert-Threlkeld, Lambda calculi, Internet Encyclopedia of Philosophy, Stanford

University (2018).
[Tur36] Alan M. Turing, On computable numbers, with an application to the entscheidungsprob-

lem, Proceedings of the London Mathematical Society, Series 2, 42:230{265 (1936).

12

