
What is Functional Programming, anyway?
And why do we care?

Ricky Elrod
Youngstown State University
December 3, 2016



What does “functional programming” mean?
...and what are the implications?

• Functional programming is simply programming with
functions.

• But what is a function?
I A function is a relation mapping elements of one set to
elements of another set.

I Just like in your high school algebra class!



What does “functional programming” mean?
...and what are the implications?

• Functional programming is simply programming with
functions.

• But what is a function?
I A function is a relation mapping elements of one set to
elements of another set.

I Just like in your high school algebra class!



Referential Transparency

• The central notion to the idea of functional programming
is known as referential transparency.

• Referential transparency leads to program
compositionality.



Referential Transparency

• The central notion to the idea of functional programming
is known as referential transparency.

• Referential transparency leads to program
compositionality.





Referential Transparency

• Think of some expression in a programming language of
your choice.

• Now, mentally evaluate that expression and replace the
expression in the code with the result of evaluating it.

• Does the behavior of the program change?
I If no, then the expression is referentially transparent.
I If yes, then the expression is not referentially transparent.



Referential Transparency

• Think of some expression in a programming language of
your choice.

• Now, mentally evaluate that expression and replace the
expression in the code with the result of evaluating it.

• Does the behavior of the program change?
I If no, then the expression is referentially transparent.
I If yes, then the expression is not referentially transparent.



Referential Transparency

• Think of some expression in a programming language of
your choice.

• Now, mentally evaluate that expression and replace the
expression in the code with the result of evaluating it.

• Does the behavior of the program change?
I If no, then the expression is referentially transparent.
I If yes, then the expression is not referentially transparent.



Referential Transparency
An abstract example

Program 1

val x = foobar(args)
val y1 = something(x)
val y2 = something(x)

Program 2

val y1 = something(foobar(args))
val y2 = something(foobar(args))

• If the two programs produce the same output, then
foobar is referentially transparent.

• In a purely functional programming language, every
function is referentially transparent (i.e., pure).



Referential Transparency
An abstract example

Program 1

val x = foobar(args)
val y1 = something(x)
val y2 = something(x)

Program 2

val y1 = something(foobar(args))
val y2 = something(foobar(args))

• If the two programs produce the same output, then
foobar is referentially transparent.

• In a purely functional programming language, every
function is referentially transparent (i.e., pure).



Referential Transparency
An abstract example

Program 1

val x = foobar(args)
val y1 = something(x)
val y2 = something(x)

Program 2

val y1 = something(foobar(args))
val y2 = something(foobar(args))

• If the two programs produce the same output, then
foobar is referentially transparent.

• In a purely functional programming language, every
function is referentially transparent (i.e., pure).



So why do we care?
Compositionality - Frege’s Principle

• Staying true to this central thesis of functional
programming leads to composable programs.

• Smaller programs can coherently be combined
(composed) to make larger, more interesting programs,
with little effort.



So why do we care?
Compositionality - Frege’s Principle

• Staying true to this central thesis of functional
programming leads to composable programs.

• Smaller programs can coherently be combined
(composed) to make larger, more interesting programs,
with little effort.



So why do we care?
Compositionality - Frege’s Principle

• Staying true to this central thesis of functional
programming leads to composable programs.

• Smaller programs can coherently be combined
(composed) to make larger, more interesting programs,
with little effort.

• We get fewer bugs because we can confidently determine
program behavior by determining behavior of the smaller
parts from which they are comprised.

• Codebases scale infinitely and cleanly by composing
more and more subprograms.

• We (force ourselves to) write deterministic algorithms.
Reasoning is easier.



So why do we care?
Compositionality - Frege’s Principle

• Staying true to this central thesis of functional
programming leads to composable programs.

• Smaller programs can coherently be combined
(composed) to make larger, more interesting programs,
with little effort.

• We get fewer bugs because we can confidently determine
program behavior by determining behavior of the smaller
parts from which they are comprised.

• Codebases scale infinitely and cleanly by composing
more and more subprograms.

• We (force ourselves to) write deterministic algorithms.
Reasoning is easier.



So why do we care?
Compositionality - Frege’s Principle

• Staying true to this central thesis of functional
programming leads to composable programs.

• Smaller programs can coherently be combined
(composed) to make larger, more interesting programs,
with little effort.

• We get fewer bugs because we can confidently determine
program behavior by determining behavior of the smaller
parts from which they are comprised.

• Codebases scale infinitely and cleanly by composing
more and more subprograms.

• We (force ourselves to) write deterministic algorithms.
Reasoning is easier.



So why do we care?
Compositionality - Frege’s Principle

• Staying true to this central thesis of functional
programming leads to composable programs.

• Smaller programs can coherently be combined
(composed) to make larger, more interesting programs,
with little effort.

• We get fewer bugs because we can confidently determine
program behavior by determining behavior of the smaller
parts from which they are comprised.

• Codebases scale infinitely and cleanly by composing
more and more subprograms.

• We (force ourselves to) write deterministic algorithms.
Reasoning is easier.



A quick review
before we move on...

• What is functional programming?

I Functional programming is a means of programming in
which expressions are refrerentially transparent.

• What is referential transparency?

I The ability to replace an expression by its result.



A quick review
before we move on...

• What is functional programming?
I Functional programming is a means of programming in
which expressions are refrerentially transparent.

• What is referential transparency?

I The ability to replace an expression by its result.



A quick review
before we move on...

• What is functional programming?
I Functional programming is a means of programming in
which expressions are refrerentially transparent.

• What is referential transparency?

I The ability to replace an expression by its result.



A quick review
before we move on...

• What is functional programming?
I Functional programming is a means of programming in
which expressions are refrerentially transparent.

• What is referential transparency?
I The ability to replace an expression by its result.



Functional programming is a commitment to preserving
referential transparency.



We have tools which help us to achieve this commitment.



Tool #1: Parametric Polymorphism



Parametric Polymorphism (a.k.a. “parametricity”)

• Philip Wadler (1989) - “Theorems for Free”: Write down the
definition of a polymorphic function on a piece of paper.
Tell me its type, but be careful not to let me see the
function’s definition. I will tell you a theorem that the
function satisfies. The purpose of this paper is to explain
the trick.



Parametric Polymorphism (a.k.a. “parametricity”)

• Consider a function of this type: int add10(int a)
I This function has (232)232 = 18, 446, 744,073, 709, 551, 616
possible implementations.

I From the type alone, that is all we know about this
function. :-(

I From the name, we might form a suspicion that it adds 10
to its argument and returns the result.



Parametric Polymorphism (a.k.a. “parametricity”)

• Consider a function of this type: int add10(int a)
I This function has (232)232 = 18, 446, 744,073, 709, 551, 616
possible implementations.

I From the type alone, that is all we know about this
function. :-(

I From the name, we might form a suspicion that it adds 10
to its argument and returns the result.



Parametric Polymorphism (a.k.a. “parametricity”)

• Consider a function of this type: int add10(int a)
I This function has (232)232 = 18, 446, 744,073, 709, 551, 616
possible implementations.

I From the type alone, that is all we know about this
function. :-(

I From the name, we might form a suspicion that it adds 10
to its argument and returns the result.





Parametric Polymorphism (a.k.a. “parametricity”)
Another monomorphic example

• Consider List<int> demo(List<int> xs)
I Does it add 6 to every element?

I Does it filter out and remove every prime number?
I Who knows?
I We can’t generate any theorem based on the type alone.



Parametric Polymorphism (a.k.a. “parametricity”)
Another monomorphic example

• Consider List<int> demo(List<int> xs)
I Does it add 6 to every element?
I Does it filter out and remove every prime number?

I Who knows?
I We can’t generate any theorem based on the type alone.



Parametric Polymorphism (a.k.a. “parametricity”)
Another monomorphic example

• Consider List<int> demo(List<int> xs)
I Does it add 6 to every element?
I Does it filter out and remove every prime number?
I Who knows?

I We can’t generate any theorem based on the type alone.



Parametric Polymorphism (a.k.a. “parametricity”)
Another monomorphic example

• Consider List<int> demo(List<int> xs)
I Does it add 6 to every element?
I Does it filter out and remove every prime number?
I Who knows?
I We can’t generate any theorem based on the type alone.



Parametric Polymorphism (a.k.a. “parametricity”)
A polymorphic example

• Consider <A> List<A> demo(List<A> xs)
I Theorem: The list returned by demo will only ever contain
elements which appeared in the input.

I Otherwise, it would not have compiled!
I I can’t tell you what the function does, but I can certainly
tell you a lot about things which it does not do!

I And I didn’t have to put much effort into it, to be able to
do that!



Parametric Polymorphism (a.k.a. “parametricity”)
A polymorphic example

• Consider <A> List<A> demo(List<A> xs)
I Theorem: The list returned by demo will only ever contain
elements which appeared in the input.

I Otherwise, it would not have compiled!

I I can’t tell you what the function does, but I can certainly
tell you a lot about things which it does not do!

I And I didn’t have to put much effort into it, to be able to
do that!



Parametric Polymorphism (a.k.a. “parametricity”)
A polymorphic example

• Consider <A> List<A> demo(List<A> xs)
I Theorem: The list returned by demo will only ever contain
elements which appeared in the input.

I Otherwise, it would not have compiled!
I I can’t tell you what the function does, but I can certainly
tell you a lot about things which it does not do!

I And I didn’t have to put much effort into it, to be able to
do that!



Parametric Polymorphism (a.k.a. “parametricity”)
A polymorphic example

• Consider <A> List<A> demo(List<A> xs)
I Theorem: The list returned by demo will only ever contain
elements which appeared in the input.

I Otherwise, it would not have compiled!
I I can’t tell you what the function does, but I can certainly
tell you a lot about things which it does not do!

I And I didn’t have to put much effort into it, to be able to
do that!



Tool #2: Treating programming language as if they are total



Fast And Loose Reasoning is Morally Correct
2006 - Danielsson, Hughes, Jansson, Gibbons

• Functional programmers often reason about programs as
if they were written in a total language, expecting the
results to carry over to non-total (partial) languages. We
justify such reasoning.





So what does it mean?

• Consider bool isOdd(int a) = ...

• By “Fast and Loose Reasoning,” we can casually say “This
function returns one of two values.”

• We can safely ignore implementations such as bool
isOdd(int a) = isOdd(a).



So what does it mean?

• Consider bool isOdd(int a) = ...

• By “Fast and Loose Reasoning,” we can casually say “This
function returns one of two values.”

• We can safely ignore implementations such as bool
isOdd(int a) = isOdd(a).



So what does it mean?

• Consider bool isOdd(int a) = ...

• By “Fast and Loose Reasoning,” we can casually say “This
function returns one of two values.”

• We can safely ignore implementations such as bool
isOdd(int a) = isOdd(a).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null

I Exceptions
I Type-casing
I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions

I Type-casing
I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing

I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing
I Type-casting

I Side-effects
I universal equals/toString/hashCode/etc.

• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing
I Type-casting
I Side-effects

I universal equals/toString/hashCode/etc.
• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing
I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing
I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We can discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing
I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We should discard these (and face zero penalty).



Fast and Loose Reasoning

• Many programming languages ship with things which let
us escape the promises of the type system.

I null
I Exceptions
I Type-casing
I Type-casting
I Side-effects
I universal equals/toString/hashCode/etc.

• We must discard these (and face zero penalty).



Tool #3: The lack of unit testing



Tool #3: The lack of unit testing



Yes, getting rid of unit
testing is a useful tool.



Have I gotten your attention yet?

• The Problems with Unit Testing (Elrod, 2014)
I Unit testing helps to convinces us of things that are likely
untrue.

I Thus, they instill a false sense of confidence that our code
works.

I ...leading to bugs and surprises.



Have I gotten your attention yet?

• The Problems with Unit Testing (Elrod, 2014)
I Unit testing helps to convinces us of things that are likely
untrue.

I Thus, they instill a false sense of confidence that our code
works.

I ...leading to bugs and surprises.



Have I gotten your attention yet?

• The Problems with Unit Testing (Elrod, 2014)
I Unit testing helps to convinces us of things that are likely
untrue.

I Thus, they instill a false sense of confidence that our code
works.

I ...leading to bugs and surprises.



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?
I We write unit tests to convince ourselves that our
suspicion is right.



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?

I We write unit tests to convince ourselves that our
suspicion is right.



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?
I We write unit tests to convince ourselves that our
suspicion is right.



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?
I We write unit tests to convince ourselves that our
suspicion is right.

I We write a comment above the code:

/* This function definitely reverses its
input list! */



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?
I We write unit tests to convince ourselves that our
suspicion is right.

I We write a comment above the code:

/* This function definitely reverses its
input list! */



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?
I We write unit tests to convince ourselves that our
suspicion is right.

I We write a comment above the code:

/* This function definitely reverses its
input list! */



Property-based testing

• Consider again the function type: <A> List<A>
demo(List<A>)

I Recall: Theorem: The list returned by demo will only ever
contain elements which appeared in the input.

I But how do we narrow down the ambiguity?
I We write unit tests to convince ourselves that our
suspicion is right.

I We write a comment above the code:

/* This function definitely reverses its
input list! */

I We write true, testable statements about the code.
Properties that we claim it exhibits.



Property-based testing

Program 1

// property> demo(List.empty) == List.empty
//
// property> x => demo(demo(x)) == x
//
// property> (x, y) => demo(x.append(y))
// == demo(y).append(demo(x))

<A> List<A> demo(List<A> xs) {
// ...

}



Property-based testing

• Once those properties are written, the computer can
generate random test cases to ensure they are met.

• The computer’s test cases are better than yours.
• If a test case fails, the computer can tell us which inputs
it tried and failed with.

• This method of testing has been popularized by Claessen
and Hughes in their QuickCheck tool and corresponding
paper.

• It subsumes unit testing.



Property-based testing

• Once those properties are written, the computer can
generate random test cases to ensure they are met.

• The computer’s test cases are better than yours.

• If a test case fails, the computer can tell us which inputs
it tried and failed with.

• This method of testing has been popularized by Claessen
and Hughes in their QuickCheck tool and corresponding
paper.

• It subsumes unit testing.



Property-based testing

• Once those properties are written, the computer can
generate random test cases to ensure they are met.

• The computer’s test cases are better than yours.
• If a test case fails, the computer can tell us which inputs
it tried and failed with.

• This method of testing has been popularized by Claessen
and Hughes in their QuickCheck tool and corresponding
paper.

• It subsumes unit testing.



Property-based testing

• Once those properties are written, the computer can
generate random test cases to ensure they are met.

• The computer’s test cases are better than yours.
• If a test case fails, the computer can tell us which inputs
it tried and failed with.

• This method of testing has been popularized by Claessen
and Hughes in their QuickCheck tool and corresponding
paper.

• It subsumes unit testing.



Property-based testing

• Once those properties are written, the computer can
generate random test cases to ensure they are met.

• The computer’s test cases are better than yours.
• If a test case fails, the computer can tell us which inputs
it tried and failed with.

• This method of testing has been popularized by Claessen
and Hughes in their QuickCheck tool and corresponding
paper.

• It subsumes unit testing.



Tool #4: Types As Documentation



Types As Documentation
What theorems do these functions give us for free?

• <A> A blah(A x)

• <A, B> List<B> blah2(List<A> x, Func<A, B>
f)

• <A, B> List<B> blah3(List<A> x, Func<A,
List<B» f)



Types As Documentation
What theorems do these functions give us for free?

• <A> A blah(A x)

• <A, B> List<B> blah2(List<A> x, Func<A, B>
f)

• <A, B> List<B> blah3(List<A> x, Func<A,
List<B» f)



Types As Documentation
What theorems do these functions give us for free?

• <A> A blah(A x)

• <A, B> List<B> blah2(List<A> x, Func<A, B>
f)

• <A, B> List<B> blah3(List<A> x, Func<A,
List<B» f)



Types As Documentation

• Types, used properly, are documentation.

• Reliable documentation, that doesn’t go out of date.
• Dense documentation.
• Like comments except condensed, machine-checked, and
without the human-added falsehoods and lies.



Types As Documentation

• Types, used properly, are documentation.
• Reliable documentation, that doesn’t go out of date.

• Dense documentation.
• Like comments except condensed, machine-checked, and
without the human-added falsehoods and lies.



Types As Documentation

• Types, used properly, are documentation.
• Reliable documentation, that doesn’t go out of date.
• Dense documentation.

• Like comments except condensed, machine-checked, and
without the human-added falsehoods and lies.



Types As Documentation

• Types, used properly, are documentation.
• Reliable documentation, that doesn’t go out of date.
• Dense documentation.
• Like comments except condensed, machine-checked, and
without the human-added falsehoods and lies.



Tool #5: Types As Theorems; Programs as Proofs
(Curry-Howard Correspondence)



Tool #6: Mathematical correspondences
(Curry-Howard-Lambek Correspondence; category theory)



Tool #7: Data types



Data Types
Example: The Option Type

• The Option (or “Optional” or “Maybe”) type is a list with
at-most one element.

• Every operation we can perform on lists (map, flatMap,
etc.) can be performed on Option.

• Like List<A>, it is polymorphic over its element:
Option<A>.

• Haskell code: data Maybe a = Just a | Nothing

• Used for indicating no useful value has come back from a
computation.

• It’s basically null, except type-safe!



Data Types
Example: The Option Type

• The Option (or “Optional” or “Maybe”) type is a list with
at-most one element.

• Every operation we can perform on lists (map, flatMap,
etc.) can be performed on Option.

• Like List<A>, it is polymorphic over its element:
Option<A>.

• Haskell code: data Maybe a = Just a | Nothing

• Used for indicating no useful value has come back from a
computation.

• It’s basically null, except type-safe!



Data Types
Example: The Option Type

• The Option (or “Optional” or “Maybe”) type is a list with
at-most one element.

• Every operation we can perform on lists (map, flatMap,
etc.) can be performed on Option.

• Like List<A>, it is polymorphic over its element:
Option<A>.

• Haskell code: data Maybe a = Just a | Nothing

• Used for indicating no useful value has come back from a
computation.

• It’s basically null, except type-safe!



Data Types
Example: The Option Type

• The Option (or “Optional” or “Maybe”) type is a list with
at-most one element.

• Every operation we can perform on lists (map, flatMap,
etc.) can be performed on Option.

• Like List<A>, it is polymorphic over its element:
Option<A>.

• Haskell code: data Maybe a = Just a | Nothing

• Used for indicating no useful value has come back from a
computation.

• It’s basically null, except type-safe!



Data Types
Example: The Option Type

• The Option (or “Optional” or “Maybe”) type is a list with
at-most one element.

• Every operation we can perform on lists (map, flatMap,
etc.) can be performed on Option.

• Like List<A>, it is polymorphic over its element:
Option<A>.

• Haskell code: data Maybe a = Just a | Nothing

• Used for indicating no useful value has come back from a
computation.

• It’s basically null, except type-safe!



Data Types
Example: The Option Type

• The Option (or “Optional” or “Maybe”) type is a list with
at-most one element.

• Every operation we can perform on lists (map, flatMap,
etc.) can be performed on Option.

• Like List<A>, it is polymorphic over its element:
Option<A>.

• Haskell code: data Maybe a = Just a | Nothing

• Used for indicating no useful value has come back from a
computation.

• It’s basically null, except type-safe!



Data Types
Example: The Option Type

head :: List a -> Maybe a
head EmptyList = Nothing
head NonEmptyList x xs = Just x

-- Ever seen an ArrayOutOfBoundsException?
index :: Array a -> Int -> Maybe a
index arr n =
if length arr >= (n - 1)
then Just ...
else Nothing

-- and so on.



Tool #7:
Commitment to all of the above.
(Because they are better than the dysfunctional programming
you are doing now.)



Software Engineering Goals

• Fix bugs independently of creating new ones.

• Introduce features without breaking old ones.
• Be able to have many projects with little-to-no
maintenance.

• Reliably, efficiently, correctly determine what problem
existing code solves.



Software Engineering Goals

• Fix bugs independently of creating new ones.
• Introduce features without breaking old ones.

• Be able to have many projects with little-to-no
maintenance.

• Reliably, efficiently, correctly determine what problem
existing code solves.



Software Engineering Goals

• Fix bugs independently of creating new ones.
• Introduce features without breaking old ones.
• Be able to have many projects with little-to-no
maintenance.

• Reliably, efficiently, correctly determine what problem
existing code solves.



Software Engineering Goals

• Fix bugs independently of creating new ones.
• Introduce features without breaking old ones.
• Be able to have many projects with little-to-no
maintenance.

• Reliably, efficiently, correctly determine what problem
existing code solves.



Commonly heard quotes, distracting from goals

• “How’s the Haskell Programmer ivory tower?”

• “Why do you hate <technology/language>?”
• “All tools have a purpose!”
• “The learning curve is too high!”
• “Why are you so extremist?”



Commonly heard quotes, distracting from goals

• “How’s the Haskell Programmer ivory tower?”
• “Why do you hate <technology/language>?”

• “All tools have a purpose!”
• “The learning curve is too high!”
• “Why are you so extremist?”



Commonly heard quotes, distracting from goals

• “How’s the Haskell Programmer ivory tower?”
• “Why do you hate <technology/language>?”
• “All tools have a purpose!”

• “The learning curve is too high!”
• “Why are you so extremist?”



Commonly heard quotes, distracting from goals

• “How’s the Haskell Programmer ivory tower?”
• “Why do you hate <technology/language>?”
• “All tools have a purpose!”
• “The learning curve is too high!”

• “Why are you so extremist?”



Commonly heard quotes, distracting from goals

• “How’s the Haskell Programmer ivory tower?”
• “Why do you hate <technology/language>?”
• “All tools have a purpose!”
• “The learning curve is too high!”
• “Why are you so extremist?”



Contact

• ricky@elrod.me
• github: @relrod
• twitter: @relrod6
• freenode IRC: relrod (see also: #haskell, #scalaz)


