
A look at Grammatical Framework:
A type-theoretic approach to linguistics

Ricky Elrod
Youngstown State University
December 7, 2016

Type Theory

Introductory Type Theory

• Type theory is a branch of math, computer science, and
logic.

• Its applications reach far beyond those fields.
• Created to eliminate mathematical paradoxes in certain
branches of math.
• Now used in computer science...

I as a way to eliminate software bugs by proving software
correct

I as a way to formalize semantics of programming
languages

I in security-critical applications (financial contracts,
cryptocurrency)

Introductory Type Theory

• Type theory is a branch of math, computer science, and
logic.
• Its applications reach far beyond those fields.

• Created to eliminate mathematical paradoxes in certain
branches of math.
• Now used in computer science...

I as a way to eliminate software bugs by proving software
correct

I as a way to formalize semantics of programming
languages

I in security-critical applications (financial contracts,
cryptocurrency)

Introductory Type Theory

• Type theory is a branch of math, computer science, and
logic.
• Its applications reach far beyond those fields.
• Created to eliminate mathematical paradoxes in certain
branches of math.

• Now used in computer science...

I as a way to eliminate software bugs by proving software
correct

I as a way to formalize semantics of programming
languages

I in security-critical applications (financial contracts,
cryptocurrency)

Introductory Type Theory

• Type theory is a branch of math, computer science, and
logic.
• Its applications reach far beyond those fields.
• Created to eliminate mathematical paradoxes in certain
branches of math.
• Now used in computer science...

I as a way to eliminate software bugs by proving software
correct

I as a way to formalize semantics of programming
languages

I in security-critical applications (financial contracts,
cryptocurrency)

Introductory Type Theory

• In a type-theoretic system, a “term” (usually a
mathematical object) is assigned a specific “type.”

• Operations are restricted to terms of certain types.
• A typing judgement (written t : T) is a statement that
the term t has type T.
• For example, if we call the type of natural numbers nat,
then inhabitants of this type are 0, 1, 2, 3,

I We can say, for example, that 2 : nat is well-typed.

Introductory Type Theory

• In a type-theoretic system, a “term” (usually a
mathematical object) is assigned a specific “type.”
• Operations are restricted to terms of certain types.

• A typing judgement (written t : T) is a statement that
the term t has type T.
• For example, if we call the type of natural numbers nat,
then inhabitants of this type are 0, 1, 2, 3,

I We can say, for example, that 2 : nat is well-typed.

Introductory Type Theory

• In a type-theoretic system, a “term” (usually a
mathematical object) is assigned a specific “type.”
• Operations are restricted to terms of certain types.
• A typing judgement (written t : T) is a statement that
the term t has type T.

• For example, if we call the type of natural numbers nat,
then inhabitants of this type are 0, 1, 2, 3,

I We can say, for example, that 2 : nat is well-typed.

Introductory Type Theory

• In a type-theoretic system, a “term” (usually a
mathematical object) is assigned a specific “type.”
• Operations are restricted to terms of certain types.
• A typing judgement (written t : T) is a statement that
the term t has type T.
• For example, if we call the type of natural numbers nat,
then inhabitants of this type are 0, 1, 2, 3,

I We can say, for example, that 2 : nat is well-typed.

Introductory Type Theory
functions

• Type theories have a notion of “functions.”

• These are denoted with an arrow: →
• For example, we can discuss a function that adds 2 to a
given natural number and returns the result. This
function would have type nat → nat.

I That is, the domain of the function is nat and the value
returned from it has type nat.

Introductory Type Theory
functions

• Type theories have a notion of “functions.”
• These are denoted with an arrow: →

• For example, we can discuss a function that adds 2 to a
given natural number and returns the result. This
function would have type nat → nat.

I That is, the domain of the function is nat and the value
returned from it has type nat.

Introductory Type Theory
functions

• Type theories have a notion of “functions.”
• These are denoted with an arrow: →
• For example, we can discuss a function that adds 2 to a
given natural number and returns the result. This
function would have type nat → nat.

I That is, the domain of the function is nat and the value
returned from it has type nat.

Grammatical Framework

Connecting Type Theory to Linguistics
Aarne Ranta’s “Grammatical Framework” - 2003

• Ranta describes his framework as “a special-purpose
functional [programming] language for defining
grammars.”

• It makes use of a well-known type theory that is used in
many proof-assistant programming languages today.

Connecting Type Theory to Linguistics
Aarne Ranta’s “Grammatical Framework” - 2003

• Ranta describes his framework as “a special-purpose
functional [programming] language for defining
grammars.”
• It makes use of a well-known type theory that is used in
many proof-assistant programming languages today.

Two Kinds Of Syntax

• Abstract: describes a hierarchy for small components of
the language to be glued together.

I Easier for computers to process. Just traverse the
hierarchy like any other tree structure.

I Harder to generate an abstract syntax for natural
languages.

• Concrete: describes what the end-user (programmer,
speaker, writer, etc.) works with.

Two Kinds Of Syntax

• Abstract: describes a hierarchy for small components of
the language to be glued together.

I Easier for computers to process. Just traverse the
hierarchy like any other tree structure.

I Harder to generate an abstract syntax for natural
languages.

• Concrete: describes what the end-user (programmer,
speaker, writer, etc.) works with.

Two Kinds Of Syntax

• Abstract: describes a hierarchy for small components of
the language to be glued together.

I Easier for computers to process. Just traverse the
hierarchy like any other tree structure.

I Harder to generate an abstract syntax for natural
languages.

• Concrete: describes what the end-user (programmer,
speaker, writer, etc.) works with.

Two Kinds Of Syntax

• Abstract: describes a hierarchy for small components of
the language to be glued together.

I Easier for computers to process. Just traverse the
hierarchy like any other tree structure.

I Harder to generate an abstract syntax for natural
languages.

• Concrete: describes what the end-user (programmer,
speaker, writer, etc.) works with.

Grammatical Framework

• Grammar-based by default (symbolic approach)

• Grammars can relate several languages at the same time.
• The system works like a programming language compiler:

I A string is “parsed” into a tree structure that the compiler
knows how to traverse (“abstract syntax tree” or AST).

I The AST is used to generate a program in machine code
that the computer can understand.

• GF grammars are more powerful than a typical compiler:
They can describe natural language (i.e., they do not have
to be context-free), they are reversible, and they are
multilingual.

Grammatical Framework

• Grammar-based by default (symbolic approach)
• Grammars can relate several languages at the same time.

• The system works like a programming language compiler:

I A string is “parsed” into a tree structure that the compiler
knows how to traverse (“abstract syntax tree” or AST).

I The AST is used to generate a program in machine code
that the computer can understand.

• GF grammars are more powerful than a typical compiler:
They can describe natural language (i.e., they do not have
to be context-free), they are reversible, and they are
multilingual.

Grammatical Framework

• Grammar-based by default (symbolic approach)
• Grammars can relate several languages at the same time.
• The system works like a programming language compiler:

I A string is “parsed” into a tree structure that the compiler
knows how to traverse (“abstract syntax tree” or AST).

I The AST is used to generate a program in machine code
that the computer can understand.

• GF grammars are more powerful than a typical compiler:
They can describe natural language (i.e., they do not have
to be context-free), they are reversible, and they are
multilingual.

Grammatical Framework

• Grammar-based by default (symbolic approach)
• Grammars can relate several languages at the same time.
• The system works like a programming language compiler:

I A string is “parsed” into a tree structure that the compiler
knows how to traverse (“abstract syntax tree” or AST).

I The AST is used to generate a program in machine code
that the computer can understand.

• GF grammars are more powerful than a typical compiler:
They can describe natural language (i.e., they do not have
to be context-free), they are reversible, and they are
multilingual.

Grammatical Framework
Several ways to write grammars

• Backus-Naur Form (BNF) can be used as a subset of the
GF language for creating context-free grammars.

• For more advanced work, the full GF language must be
used.

Grammatical Framework
Several ways to write grammars

• Backus-Naur Form (BNF) can be used as a subset of the
GF language for creating context-free grammars.
• For more advanced work, the full GF language must be
used.

A simple context-free grammar
using GF’s implementation of BNF

Pred. Comment ::= Item "is" Quality;
This. Item ::= "this" Kind;
That. Item ::= "that" Kind;
Mod. Kind ::= Quality Kind;
Wine. Kind ::= "wine";
Cheese. Kind ::= "cheese";
Fish. Kind ::= "fish";
Very. Quality ::= "very" Quality;
Fresh. Quality ::= "fresh";
Warm. Quality ::= "warm";
Italian. Quality ::= "Italian";
Expensive. Quality ::= "expensive";
Delicious. Quality ::= "delicious";
Boring. Quality ::= "boring";

Using the grammar

• We can now ask GF to parse a string which makes use of
the grammar.

demoAbs> import demo.cf

Languages: demo
0 msec

demoAbs> parse "this delicious cheese is
expensive"

Pred (This (Mod Delicious Cheese)) Expensive

1 msec

Using the grammar

• The string has been parsed into an AST.

• The AST is unique: We can ask GF to “linearize” it back
into its original string.
• We can also ask GF to diagram the sentence (to the extent
it can, with the information we have encoded thus far).

Using the grammar

• The string has been parsed into an AST.
• The AST is unique: We can ask GF to “linearize” it back
into its original string.

• We can also ask GF to diagram the sentence (to the extent
it can, with the information we have encoded thus far).

Using the grammar

• The string has been parsed into an AST.
• The AST is unique: We can ask GF to “linearize” it back
into its original string.
• We can also ask GF to diagram the sentence (to the extent
it can, with the information we have encoded thus far).

Sentence Diagramming
parse "this delicious cheese is expensive" | vp

The GF Language (without BNF subset)

• Abstractly define properties of the language.
• Provide concrete implementations of the abstract type.

Example from Ranta
Abstract Food grammar

abstract Food = {
flags startcat = Comment ;
cat

Comment ; Item ; Kind ; Quality ;
fun

Pred : Item -> Quality -> Comment ;
This, That : Kind -> Item ;
Mod : Quality -> Kind -> Kind ;
Wine, Cheese, Fish : Kind ;
Very : Quality -> Quality ;
Fresh, Warm, Italian,

Expensive, Delicious, Boring :
Quality ;

}

Example from Ranta
Concrete English implementation of Food grammar

concrete FoodEng of Food = {
lincat

Comment, Item, Kind, Quality = Str ;
lin

Pred item quality = item ++ "is" ++ quality ;
This kind = "this" ++ kind ;
That kind = "that" ++ kind ;
Mod quality kind = quality ++ kind ;
Wine = "wine" ;
Cheese = "cheese" ;
Fish = "fish" ;
Very quality = "very" ++ quality ;
Fresh = "fresh" ;
Warm = "warm" ;
Italian = "Italian" ;
Expensive = "expensive" ;
Delicious = "delicious" ;
Boring = "boring" ;

}

Example from Ranta
Concrete Italian implementation of Food grammar

concrete FoodIta of Food = {
lincat

Comment, Item, Kind, Quality = Str ;
lin

Pred item quality = item ++ "é" ++ quality ;
This kind = "questo" ++ kind ;
That kind = "quel" ++ kind ;
Mod quality kind = kind ++ quality ;
Wine = "vino" ;
Cheese = "formaggio" ;
Fish = "pesce" ;
Very quality = "molto" ++ quality ;
Fresh = "fresco" ;
Warm = "caldo" ;
Italian = "italiano" ;
Expensive = "caro" ;
Delicious = "delizioso" ;
Boring = "noioso" ;

}

Example from Ranta
Making use of it

> import FoodEng.gf FoodIta.gf
linking ... OK

Languages: FoodEng FoodIta
5 msec
Food> parse -lang=Eng "this delicious wine is Italian" | linearize -lang=Ita
questo vino delizioso é italiano

Food> generate_random | linearize -treebank
Food: Pred (That (Mod (Very Fresh) Cheese)) Delicious
FoodEng: that very fresh cheese is delicious
FoodIta: quel formaggio molto fresco é delizioso

Food> translation_quiz -from=FoodIta -to=FoodEng
Welcome to GF Translation Quiz.
The quiz is over when you have done at least 10 examples
with at least 75 % success.

quel pesce é molto molto caldo
>>> that fish is very very warm
> Yes.
Score 1/1
quel formaggio é caro
>>> that cheese is fresh
> No, not that cheese is fresh, but
that cheese is expensive

Score 1/2

Word Alignment
parse "this very warm cheese is Italian" | align_words

